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Introduction:  
 In mathematical form, Abel’s integral equation is given by [11, 13, 
24, 29, 43-44]  

f x =  
1

 x−t
u t 

x

0
dt                                                                                  (1) 

where the functions f x  and u x  are known and unknown functions 

respectively. 

In equation (1), the kernel of integral equation, K x, t =
1

 x−t
 becomes ∞ at 

t = x so equation (1) is a singular integral equation. 
Review of Literature: 

 Integral transforms are widely used mathematical techniques for 
solving advanced problems of science and engineering which 
mathematically express in terms of differential equations, delay differential 
equations, system of differential equations, partial differential equations, 
integral equations, system of integral equations, partial integro-differential 
equations and integro differential equations. Many researchers used 
different integral transforms (Laplace transform [1-2], Fourier transform [2], 
Mahgoub transform [3-11, 46-48], Kamal transform [12-19, 49], Aboodh 
transform [20-25, 50-55], Mohand transform [26-36, 45, 56-57], Elzaki 
transform [37-40, 58-60], Shehu transform [41-43, 61], Sumudu transform 
[44, 62-63] and Sadik transform [64-66]) for solving many problems of 
science and engineering.  
Sadik transform of the function F t , t ≥ 0 was proposed by Sadikali in 2018 

[64] as:  

S F t  =
1

vβ  F t e−tvα
dt

∞

0
= T vα , β ,                                                         (2) 

 where v is complex variable and  α ≠ 0 & β are any real numbers. 

Here S is called the Sadik transform operator. 

The Sadik transform of the function F t  for t ≥ 0 exist if F t  is piecewise 

continuous and of exponential order. The mention two conditions are the 
only sufficient conditions for the existence of Sadik transforms of the 
function F t .  
Aim of the Study: 

 In this paper, we are finding the solution of Abel’s integral 
equation using Sadik transform and explain the complete procedure by 
giving some numerical applications in application section.  
Some Useful Properties of Sadik Transform: 
Linearity property of Sadik transforms: 

If S F1 t  = T1 vα , β  and S F2 t  = T2 vα , β  then  
S aF1 t + bF2 t  = aS F1 t  + bS F2 t   
⇒ S aF1 t + bF2 t  = aS F1 t  + bS F2 t  = aT1 vα , β + bT2 vα , β . 
Proof By the definition of Sadik transform, we have 
 
 

Abstract 
           Abel’s integral equation is an important singular integral equation 
and generally appears in many branches of sciences such as mechanics, 
atomic scattering, physics, electron emission, radio astronomy, X-ray 
radiography and seismology. In this paper, we use Sadik transform to 
solve Abel’s integral equation and some numerical applications in 
application section are given to demonstrate the effectiveness of Sadik 
transform for solving Abel’s integral equation. It is pointed out that Sadik 
transform give the exact solution of Abel’s integral equation without any 
tedious calculation work. 
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S F t  =
1

vβ
 F t e−tvα

dt
∞

0

 

⇒ S aF1 t + bF2 t  =
1

vβ
  aF1 t + bF2 t  e−tvα

dt
∞

0

 

⇒ S aF1 t + bF2 t   

= a.
1

vβ
 F1(t)e−tvα

dt
∞

0

+ b.
1

vβ
 F2(t)e−tvα

dt
∞

0

 

⇒ S aF1 t + bF2 t  = aS F1 t  + bS F2 t   
⇒ S aF1 t + bF2 t  = aT1 vα , β + bT2 vα , β , 
 where a, b are arbitrary constants. 
Change of scale property of Sadik transforms: 

If Sadik transform of function F t  is T vα , β  
then Sadik transform of function F at  is given 

by  
1

a
T  

vα

a
, β . 

Proof: By the definition of Sadik transform, we have  

S F at  =
1

vβ  F at e−tvα
dt

∞

0
                                                                                                                                   

Put at = p ⇒ adt = dp in above equation, we have  

S F at  =
1

a
.

1

vβ
 F p e−

pvα

a dp
∞

0

 

⇒ S F at  =
1

a
 

1

vβ  F p e
−p 

vα

a
 
dp

∞

0
   

⇒ S F at  =
1

a
T  

vα

a
, β  

Shifting property of Sadik transform:  

 If Sadik transform of function F t  is T vα , β  
then Sadik transform of function eat F t is given by  
T vα − a, β . 
 Proof: By the definition of Sadik transform, we have  

S eat F t  =
1

vβ
 eat F at e−tvα

dt
∞

0

 

⇒ S eat F t  =
1

vβ
 F t e− vα−a tdt

∞

0

 

⇒ S eat F t  = T vα − a,β  
Sadik transform of the derivatives of the function 
 𝐅 𝐭  [64, 65]: 

If S F t  = T vα , β  then  

a) S F′ t  = vαT vα , β −
F 0 

vβ  

b) S F′′  t  = v2αT vα , β −
F ′ 0 

vβ
− vα F 0 

vβ
 

c) S F n  t  = vnαT vα , β − v n−1 α F 0 

vβ −

v n−2 α F ′ 0 

vβ
−⋯…−

F n−1  0 

vβ
. 

Convolution of two functions [2]: 

Convolution of two functions  F1 t  and F2 t  is 

denoted by F1 t ∗ F2 t  and it is defined by  

 F1 t ∗ F2 t =  F1 t − x 
t

0
F2 x dx 

=  F1 x 
t

0
F2 t − x dx. 

Convolution theorem for Sadik transforms: 

If Sadik transform of functions F1 t  and 

F2 t are T1 vα , β and T2 vα , β  respectively then Sadik 

transform of their convolution F1 t ∗ F2 t  is given by  

S F1 t ∗ F2 t  = vβS F1 t  S F2 t   

⇒ S F1 t ∗ F2 t  = vβ  T1 vα , β T2 vα , β , 
Proof: By the definition of Sadik transform, we have 

 S F1 t ∗ F2 t  =
1

vβ   F1 t ∗ F2 t  e−tvα
dt

∞

0
 

⇒ S F1 t ∗ F2 t   =
1

vβ  e−tvα∞

0
  F1 t − x 

t

0
F2 x dx dt 

By changing the order of integration, we have 

S F1 t ∗ F2 t  =  F2 x 
∞

0

 
1

vβ
 e−tvα

F1 t − x 
∞

x

dt dx 

Put t − x = p so that dt = dp in above equation, we 

have 

S F1 t ∗ F2 t  =  F2 x 
∞

0

 
1

vβ
 e−(p+x)vα

F1 p 
∞

0

dp dx 

⇒ S F1 t ∗ F2 t  

=  F2 x e−xvα
∞

0

 
1

vβ
 e−pvα

F1 p 
∞

0

dp dx

=  F2 x e−xvα
∞

0

 S F1 t   dx 

⇒ S F1 t ∗ F2 t  =  S F1 t    F2 x e−xvα
∞

0

dx 

⇒ S F1 t ∗ F2 t  =   T1 vα , β  vβ  
1

vβ
 F2 x e−xvα

∞

0

dx  

⇒ S F1 t ∗ F2 t  = vβS F1 t  S F2 t   

⇒ S F1 t ∗ F2 t  = vβ  T1 vα , β T2 vα , β . 

 
Sadik Transform of Frequently Encountered Functions [64, 66]: 

Table: 1 

S.N. F t  S F t  = T vα , β  

1. 1 1

vα+β
 

2. t 1

v2α+β
 

3. t2 2!

v3α+β
 

4. tn , n ∈ N n!

v(n+1)α+β
 

5. tn , n > −1 Γ(n + 1)

v(n+1)α+β
 

6. eat  1

vβ vα − a 
 

7. sinat a

vβ v2α + a2 
 

8. cosat vα

vβ v2α + a2 
 

9. sinhat a

vβ v2α − a2 
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 10. coshat vα

vβ v2α − a2 
 

Inverse Sadik Transform [66]: 

 If Sadik transform of F t  is T vα , β  i.e. S F t  = T vα , β   then F t  is called the inverse Sadik transform of 

T vα , β  and mathematical terms it can be expressed as F t = S−1{T vα , β }.  
Here the operator S−1 is known as the inverse Sadik transform operator. 
Linearity Property of Inverse Sadik Transforms: 

If S−1 T1 vα , β  =  F1 t  and S−1{T2 vα , β } =  F2 t   then S−1 aT1 vα ,β + bT2 vα , β   
= aS−1{T1 vα ,β } + bS−1{T2 vα ,β } 
⇒ S−1 aT1 vα , β + bT2 vα , β  = a F1 t + b F2 t , where a, b are arbitrary constants.

Inverse Sadik Transform of Frequently Encountered Functions [66]: 
Table: 2 

S.N. 𝑻 𝒗𝜶,𝜷  𝑭 𝒕 = 𝑺−𝟏{𝑻 𝒗 } 
1. 1

𝑣𝛼+𝛽
 

1 

2. 1

𝑣2𝛼+𝛽
 

𝑡 

3. 1

𝑣3𝛼+𝛽
 

𝑡2

2!
 

4. 1

𝑣(𝑛+1)𝛼+𝛽
 

𝑡𝑛

𝑛!
 

5. 1

𝑣(𝑛+1)𝛼+𝛽
 

𝑡𝑛

𝛤(𝑛 + 1)
 

6. 1

𝑣𝛽 𝑣𝛼 − 𝑎 
 

𝑒𝑎𝑡  

7. 1

𝑣𝛽 𝑣2𝛼 + 𝑎2 
 

𝑠𝑖𝑛𝑎𝑡

𝑎
 

8. 𝑣𝛼

𝑣𝛽 𝑣2𝛼 + 𝑎2 
 

𝑐𝑜𝑠𝑎𝑡 

9. 1

𝑣𝛽 𝑣2𝛼 − 𝑎2 
 

𝑠𝑖𝑛ℎ𝑎𝑡

𝑎
 

10. 𝑣𝛼

𝑣𝛽 𝑣2𝛼 − 𝑎2 
 

𝑐𝑜𝑠ℎ𝑎𝑡 

 
Sadik Transform Method for Solving Abel’s Integral 
Equation 

 In this section, we present Sadik transform for 
the solution of Abel’s integral equation. 
Taking Sadik transform of both sides of equation (1), we 
have 

𝑆 𝑓 𝑥  = 𝑆   
1

 𝑥 − 𝑡
𝑢 𝑡 

𝑥

0

𝑑𝑡  

⇒ 𝑆 𝑓 𝑥  = 𝑆 𝑥−1/2 ∗ 𝑢 𝑥                                           (3) 

Applying convolution theorem of Sadik transform in 
equation (3), we have 

𝑆 𝑓 𝑥  = 𝑣𝛽𝑆 𝑥−1/2 𝑆 𝑢 𝑥   

⇒ 𝑆 𝑓 𝑥  = 𝑣𝛽  
 𝜋

𝑣
𝛼
2

+𝛽
 𝑆 𝑢 𝑥   

⇒ 𝑆 𝑢 𝑥  =
𝑣
𝛼
2

 𝜋
𝑆 𝑓 𝑥   

⇒ 𝑆 𝑢 𝑥  =
𝑣𝛼

𝜋
 𝑣𝛽  

 𝜋

𝑣
𝛼
2

+𝛽
 𝑆 𝑓 𝑥    

⇒ 𝑆 𝑢 𝑥  =
𝑣𝛼

𝜋
 𝑣𝛽𝑆 𝑥−1/2 𝑆 𝑓 𝑥    

⇒ 𝑆 𝑢 𝑥  =
𝑣𝛼

𝜋
𝑆 𝑥−1/2 ∗ 𝑓 𝑥   

⇒ 𝑆 𝑢 𝑥  =
𝑣𝛼

𝜋
 𝑆   

1

 𝑥 − 𝑡
𝑓 𝑡 

𝑥

0

𝑑𝑡   

⇒ 𝑆 𝑢 𝑥  =
𝑣𝛼

𝜋
𝑆 𝐹(𝑥)                                              (4) 

where 𝐹 𝑥 =  
1

 𝑥−𝑡
𝑓 𝑡 

𝑥

0
𝑑𝑡                                     (5) 

 Now applying the property, Sadik transform 
of derivative of the function, on equation (5), we have  

𝑆 𝐹 ′ 𝑥  = 𝑣𝛼𝑆 𝐹 𝑥  −
𝐹 0 

𝑣𝛽
 

⇒ 𝑆 𝐹 ′(𝑥) = 𝑣𝛼𝑆 𝐹 𝑥   

⇒ 𝑆 𝐹(𝑥) =
1

𝑣𝛼 𝑆 𝐹
′(𝑥)                                             (6) 

Now from (4) and (6), we have 

𝑆 𝑢 𝑥  =
1

𝜋
𝑆 𝐹′(𝑥)                                                  (7) 

Applying inverse Sadik transform on both sides of 
equation (7), we get 

𝑢 𝑥 =
1

𝜋
𝐹′ 𝑥 =

1

𝜋
 
𝑑

𝑑𝑥
𝐹(𝑥)                                       (8) 

Using (5) in (8), we have  

𝑢 𝑥 =
1

𝜋
 
𝑑

𝑑𝑥
 

1

 𝑥−𝑡
𝑓 𝑡 

𝑥

0
𝑑𝑡                                       (9) 

which is the required solution of (1). 
Applications:  

 In this section, we present some numerical 
applications to demonstrate the effectiveness of Sadik 
transform for solving Abel’s integral equation. 
Application:1 Consider the Abel’s integral equation: 

𝑥 =  
1

 𝑥−𝑡
𝑢 𝑡 

𝑥

0
𝑑𝑡                                                 (10) 

Taking Sadik transform of both sides of equation (10), 
we have 
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 𝑆 𝑥 = 𝑆   
1

 𝑥 − 𝑡
𝑢 𝑡 

𝑥

0

𝑑𝑡  

⇒
1

𝑣2𝛼+𝛽 = 𝑆 𝑥−1/2 ∗ 𝑢 𝑥                                        (11) 

Applying convolution theorem of Sadik transform in 
equation (11), we have 

1

𝑣2𝛼+𝛽
= 𝑣𝛽𝑆 𝑥−1/2 𝑆 𝑢 𝑥   

⇒
1

𝑣2𝛼+𝛽
= 𝑣𝛽  

 𝜋

𝑣
𝛼
2

+𝛽
 𝑆 𝑢 𝑥   

⇒ 𝑆 𝑢 𝑥  =
1

 𝑣
3𝛼
2

+𝛽     𝜋
                                            (12)  

Applying inverse Sadik transform on both sides of 
equation (12), we get 

𝑢 𝑥 =
1

 𝜋
𝑆−1  

1

 𝑣
3𝛼
2

+𝛽    
  

⇒ 𝑢 𝑥 =
2

𝜋
𝑥1/2                                                      (13) 

which is the required solution of equation (10). 
Application:2 Consider the Abel’s integral equation: 

1 + 𝑥 + 𝑥2 =  
1

 𝑥−𝑡
𝑢 𝑡 

𝑥

0
𝑑𝑡                                    (14) 

Taking Sadik transform of both sides of equation (14), 
we have 

𝑆 1 + 𝑆 𝑥 + 𝑆 𝑥2 = 𝑆   
1

 𝑥 − 𝑡
𝑢 𝑡 

𝑥

0

𝑑𝑡  

⇒
1

𝑣𝛼+𝛽 +
1

𝑣2𝛼+𝛽 +
2

𝑣3𝛼+𝛽 = 𝑆 𝑥−1/2 ∗ 𝑢 𝑥                    (15) 

Applying convolution theorem of Sadik transform in 
equation (15), we have 

1

𝑣𝛼+𝛽
+

1

𝑣2𝛼+𝛽
+

2

𝑣3𝛼+𝛽
= 𝑣𝛽𝑆 𝑥−1/2 𝑆 𝑢 𝑥   

⇒
1

𝑣𝛼+𝛽
+

1

𝑣2𝛼+𝛽
+

2

𝑣3𝛼+𝛽
= 𝑣𝛽  

 𝜋

v
𝛼
2

+𝛽
 𝑆 𝑢 𝑥   

⇒ 𝑆 𝑢 𝑥  =
1

 𝜋
 

1

𝑣
𝛼
2 +𝛽

+
1

𝑣
3𝛼
2 +𝛽

+
2

𝑣
5𝛼
2 +𝛽

                        (16)  

Applying inverse Sadik transform on both sides of 
equation (16), we get 

𝑢 𝑥 =
1

 𝜋
𝑆−1  

1

𝑣
𝛼
2

+𝛽
+

1

𝑣
3𝛼
2

+𝛽
+

2

𝑣
5𝛼
2

+𝛽
  

⇒ 𝑢 𝑥 =
1

 𝜋
 𝑆−1  

1

𝑣
𝛼
2 +𝛽

 + 𝑆−1  
1

𝑣
3𝛼
2 +𝛽

 + 2𝑆−1  
1

𝑣
5𝛼
2 +𝛽

    

⇒ 𝑢 𝑥 =
1

𝜋
 𝑥−1/2 + 2𝑥1/2 +

8

3
𝑥3/2                         (17) 

which is the required solution of equation (14). 
Application:3 Consider the Abel’s integral equation: 

3𝑥2 =  
1

 𝑥−𝑡
𝑢 𝑡 

𝑥

0
𝑑𝑡                                              (18) 

Taking Sadik transform of both sides of equation (18), 
we have 

3𝑆 𝑥2 = 𝑆   
1

 𝑥 − 𝑡
𝑢 𝑡 

𝑥

0

𝑑𝑡  

⇒
6

𝑣3𝛼+𝛽 = 𝑆 𝑥−1/2 ∗ 𝑢 𝑥                                         (19) 

Applying convolution theorem of Sadik transform in 
equation (19), we have 

6

𝑣3𝛼+𝛽
= 𝑣𝛽𝑆 𝑥−1/2 𝑆 𝑢 𝑥   

⇒
6

𝑣3𝛼+𝛽
= 𝑣𝛽  

 𝜋

𝑣
𝛼
2

+𝛽
 𝑆 𝑢 𝑥   

⇒ 𝑆 𝑢 𝑥  =
6

 𝜋
 

1

𝑣
5𝛼
2 +𝛽

                                              (20)  

Applying inverse Sadik transform on both sides of 
equation (20), we get 

𝑢 𝑥 =
6

 𝜋
𝑆−1  

1

𝑣
5𝛼
2

+𝛽
  

⇒ 𝑢 𝑥 =
8

𝜋
𝑥3/2                                                       (21) 

which is the required solution of equation (18). 
Application:4 Consider the Abel’s integral equation: 
4

3
𝑥3/2 =  

1

 𝑥−𝑡
𝑢 𝑡 

𝑥

0
𝑑𝑡                                            (22) 

Taking Sadik transform of both sides of equation (22), 
we have 
4

3
𝑆 𝑥3/2 = 𝑆   

1

 𝑥 − 𝑡
𝑢 𝑡 

𝑥

0

𝑑𝑡  

⇒  𝜋  
1

𝑣
5𝛼
2

+𝛽
 = 𝑆 𝑥−1/2 ∗ 𝑢 𝑥                                 (23) 

Applying convolution theorem of Sadik transform in 
equation (23), we have 

 𝜋  
1

𝑣
5𝛼
2

+𝛽
 = 𝑣𝛽𝑆 𝑥−1/2 𝑆 𝑢 𝑥   

⇒  𝜋  
1

𝑣
5𝛼
2

+𝛽
 = 𝑣𝛽  

 𝜋

𝑣
𝛼
2

+𝛽
 𝑆 u 𝑥   

⇒ 𝑆 𝑢 𝑥  =
1

𝑣2𝛼+𝛽
                                                   (24)  

Applying inverse Sadik transform on both sides of 
equation (24), we get 

𝑢 𝑥 = 𝑆−1  
1

𝑣2𝛼+𝛽
  

⇒ 𝑢 𝑥 = 𝑥                                                             (25) 

which is the required solution of equation (22). 
Application:5 Consider the Abel’s integral equation: 

2 𝑥 +
8

3
𝑥3/2  =  

1

 𝑥−𝑡
𝑢 𝑡 

𝑥

0
𝑑𝑡                                (26) 

Taking Sadik transform of both sides of equation (26), 
we have 

2𝑆 𝑥1/2 +
8

3
𝑆 𝑥3/2 = 𝑆   

1

 𝑥 − 𝑡
𝑢 𝑡 

𝑥

0

𝑑𝑡  

⇒  𝜋  
1

𝑣
3𝛼
2

+𝛽
 + 2 𝜋  

1

𝑣
5𝛼
2 +𝛽

 = 𝑆 𝑥−1/2 ∗ 𝑢 𝑥           (27) 

Applying convolution theorem of Sadik transform in 
equation (27), we have 

 𝜋  
1

𝑣
3𝛼
2

+𝛽
 + 2 𝜋  

1

𝑣
5𝛼
2

+𝛽
 = 𝑣𝛽𝑆  𝑥−

1
2 𝑆 𝑢 𝑥   

⇒  𝜋  
1

𝑣
3𝛼
2

+𝛽
 + 2 𝜋  

1

𝑣
5𝛼
2

+𝛽
 = 𝑣𝛽  

 𝜋

𝑣
𝛼
2

+𝛽
 𝑆 𝑢 𝑥   

⇒ 𝑆 𝑢 𝑥  =
1

𝑣𝛼+𝛽 +
2

𝑣2𝛼+𝛽                                         (28)  

Applying inverse Sadik transform on both sides of 
equation (28), we get 

𝑢 𝑥 = 𝑆−1  
1

𝑣𝛼+𝛽
+

2

𝑣2𝛼+𝛽
  

= 𝑆−1  
1

𝑣𝛼+𝛽
 + 2𝑆−1  

1

𝑣2𝛼+𝛽
  

⇒ 𝑢 𝑥 = 1 + 2𝑥                                                    (29) 
which is the required solution of equation (26). 
Application:6 Consider the Abel’s integral equation: 
3

8
𝜋𝑥2  =  

1

 𝑥−𝑡
𝑢 𝑡 

𝑥

0
𝑑𝑡                                          (30) 

Taking Sadik transform of both sides of equation (30), 
we have 
3

8
𝜋𝑆 𝑥2 = 𝑆   

1

 𝑥 − 𝑡
𝑢 𝑡 

𝑥

0

𝑑𝑡  
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 ⇒
3

4
𝜋  

1

𝑣3𝛼+𝛽
 = 𝑆 𝑥−1/2 ∗ 𝑢 𝑥                                 (31) 

Applying convolution theorem of Sadik transform in 
equation (31), we have 
3

4
𝜋  

1

𝑣3𝛼+𝛽
 = 𝑣𝛽𝑆  𝑥−

1
2 𝑆 𝑢 𝑥   

⇒
3

4
𝜋  

1

𝑣3𝛼+𝛽
 = 𝑣𝛽  

 𝜋

𝑣
𝛼
2

+𝛽
 𝑆 𝑢 𝑥   

⇒ 𝑆 𝑢 𝑥  =
3

4
 𝜋  

1

𝑣
5𝛼
2

+𝛽
                                          (32)  

Applying inverse Sadik transform on both sides of 
equation (32), we get 

𝑢 𝑥 =
3

4
 𝜋𝑆−1  

1

𝑣
5𝛼
2

+𝛽
  

⇒ 𝑢 𝑥 = 𝑥3/2                                                        (33) 

which is the required solution of equation (30). 
Conclusion: 

 In this paper, we have successfully 
discussed Sadik transform for the solution of Abel’s 
integral equation. The given numerical applications in 
the application section explain the complete 
procedure for the solution of Abel’s integral equation 
using Sadik transform. The results show Sadik 
transform is a powerful integral transform for the 
solution of Abel’s integral equation. In the future, 
Sadik transform can be applied for solving other 
singular integral equations. 
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